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Directive 2010/75/EU: A Perspective

 Regulations are becoming increasingly stringent, with more scrutiny 

placed on compliance:

 How do we de-risk and assure new designs?

 How do we improve reliability, performance and emissions of ageing 

equipment?

 What do recent advances in numerical modelling offer?:

 Computer power: 

 Run more complex models

 Include more physics

 Physics: 

 Development and validation of improved physical models

 How can this be applied in practice?
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Directive 2010/75/EU Article 50

Article 50

Operating conditions

1. Waste incineration plants shall be designed, equipped, built and

operated in such a way that the gas resulting from the incineration of

waste is raised, after the last injection of combustion air, in a controlled

and homogeneous fashion and even under the most unfavourable

conditions, to a temperature of at least 850°C for at least two seconds.
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 Take an example: Article 50

 What is the spirit of this article? 

 How could it be assessed in a numerical environment?

 What is the scope for flexibility within it?
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Opportunities for Advancement

 How do we quantify details of plant operation?

 Can we accurately predict performance of new designs.

 Diagnose issues on existing plant and validate models to real life data.

 Controlled and homogeneous:

 How homogenous is good enough?

 What is the basis for 850°C for at least two seconds:

 On average, this can be satisfied, but could some of the flow see 850°C for 

much less than 2 s.

 Should credit be able to be taken for the temperature history (>1100°C 

typical)?
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Computational Fluid Dynamics (CFD) Analysis

 CFD is a computational simulation method to predict flow characteristics:

 Temperature, Velocity, Pressure.

 Combustion and chemistry can be modelled.

 Heat transfer by conduction, convection and radiation is possible.

 Whole furnace models can be built, and are within reach of cost-effective 

computational resources.

 Can use advanced multi-physics models to assess:

 Erosion, corrosion, fouling, slagging.

 Flow induced vibration, fatigue loading, noise.
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WID/Article 50 Compliance:

HRS Tansterne Project

 Heat Recovery Solutions (HRS).

 Turnkey clean energy power systems.

 www.hrs.energy

 Tansterne Biomass Power Plant.

 22MWe powered by waste wood.

 Frazer-Nash have assessed:

 Fluidised bed performance.

 Radiation section performance – power take-off and WID compliance.

 Sparge tube design.

 ITA, ATEX/DSEAR, HAZOP.
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WID/Article 50 Compliance:

HRS Transterne Project

 Two separate CFD models

 Lower: 

 Fluidised bed, resolving inflow 

through sparge tube holes.

 Fluidisation and heat transfer to 

tubes.

 Upper: 

 Radiant section with syn-gas and 

secondary air. 

 Combustion and heat take-off.

 Models coupled loosely by control 

of boundary conditions

 Check with adiabatic flame 

calculations.
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Controlled and Homogeneous:

Radiant Section Combustion and Flow
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At least 850°C for at least 2 s:

Streamlines
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 Can track transport of gases 

through thermal and turbulence 

fields.

 Can be interrogated for statistical 

analysis.

 Can be progressed to include 

species evolution.

 Assessment against Article 50:

 Plot streamlines

 Interrogate temperature history 

(>850°C)

 Check time-of-flight

 Mass flow weight and plot 

distribution
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At least 850°C for at least 2 s:

Particle Temperature History
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 Evaluate temperature history of 

transported gas from thousands of 

uniformly spaced starting positions (7 

example tracks shown)

 Calculate time spent above 850°C

 Cumulative probability distribution of 

time spent above 850°C

 Series of plant conditions and CFD 

model sensitivities shown
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Discussion

 CFD can be used as a tool to show invisible details of furnace operation.

 We can predict performance of new designs and diagnose issues on existing 

plant.

 HRS MD Mark Wickham:

“We found the work you did essential

in building confidence in the design”.

 Clever application of CFD is capable of significantly more in-depth 

analysis than the basic requirement of Article 50.

 Homogeneity: Quantitative metrics can be developed.

 Can we unlock the full potential of the analysis methods?

 CFD could be used to advance the “At least 850°C for at least two 

seconds”:

 Taking credit for the temperature history (>1100°C typical) could be argued?
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